Optimal Natural Dualities. Ii: General Theory
نویسنده
چکیده
A general theory of optimal natural dualities is presented, built on the test algebra technique introduced in an earlier paper. Given that a set R of finitary algebraic relations yields a duality on a class of algebras A = ISP(M), those subsets R′ of R which yield optimal dualities are characterised. Further, the manner in which the relations in R are constructed from those in R′ is revealed in the important special case that M generates a congruence-distributive variety and is such that each of its subalgebras is subdirectly irreducible. These results are obtained by studying a certain algebraic closure operator, called entailment, definable on any set of algebraic relations on M . Applied, by way of illustration, to the variety of Kleene algebras and to the proper subvarieties Bn of pseudocomplemented distributive lattices, the theory improves upon and illuminates previous results.
منابع مشابه
Optimal natural dualities for varieties of Heyting algebras
The techniques of natural duality theory are applied to certain finitely generated varieties of Heyting algebras to obtain optimal dualities for these varieties, and thereby to address algebraic questions about them. In particular, a complete characterisation is given of the endodualisable finite subdirectly irreducible Heyting algebras. The procedures involved rely heavily on Priestley duality...
متن کاملOPTIMAL NATURAL DUALITIES FOR SOME QUASIVARIETIES OF DISTRIBUTIVE DOUBLE p–ALGEBRAS
Quasivarieties of distributive double p-algebras generated by an ordinal sum M of two Boolean lattices are considered. Globally minimal failsets within S(M2) are completely determined; from them all the optimal dualities for these quasivarieties are obtained.
متن کاملON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملMV-algebras, infinite dimensional polyhedra, and natural dualities
We connect the dual adjunction between MV-algebras and Tychonoff spaces with the general theory of natural dualities, and provide a number of applications. In doing so, we simplify the aforementioned construction by observing that there is no need of using presentations of MV-algebras in order to obtain the adjunction. We also provide a description of the dual maps that is intrinsically geometr...
متن کاملAlgebra Universalis Full does not imply strong , does it ?
We give a duality for the variety of bounded distributive lattices that is not full (and therefore not strong) although it is full but not strong at the finite level. While this does not give a complete solution to the “Full vs Strong” Problem, which dates back to the beginnings of natural duality theory in 1980, it does solve it at the finite level. One consequence of this result is that altho...
متن کامل